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Growth model for ramified electrochemical deposition in the presence
of diffusion, migration, and electroconvection
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A growth pattern formation model for the macroscopic description of ramified electrochemical deposition is
presented. The model describes the diffusive, migration and electroconvective motion of ions and its deposition
in thin cells through the evolutionary two-dimensional Nernst-Planck equations for cation and anion concen-
tration, the Poisson equation for the electric field, the Navier-Stokes equations for the laminar fluid flow and a
dielectric breakdown model scheme for the random deposition of ions. A new set of dimensionless numbers
governing the model regimes is introduced. We present numerical results showing that, for a given set of
dimensionless numbers, the electroconvective forces produce vortex-tip interaction yielding a basic growth
pattern formation mechanism, i.e., tip splitting and fanning. This mechanism gives a reasonable picture of
reality. [S1063-651X96)01610-§

PACS numbes): 68.70+w, 82.45+2z, 47.65+a, 02.70.Bf

I. INTRODUCTION eters through theoretical analysis and physical and numerical
experiment§15-31]. In particular, the study of ECD with a
Growth pattern formation, that is, the unstable growth ofone-dimensional1D) model of the set of electrohydrody-
interfaces, is a common phenomenon in a wide range ofiamic equations describing the coupling of migration, diffu-
problems from physics to biology. It produces complex ge-sion, and electroconvection fields revealed the existence of a
ometries of fractal or dendritic character and chaotic patterngery thin boundary layer around the growing electrodeposits
[1-5] and has been extensively studied in the context of fawhere electroneutrality is violatdd5]. This layer, that pro-
from equilibrium phenomena. duces a convective motion on the fluid, is modeled as a
An example is electrochemical depositiECD) of rami-  charge concentrated at the tips of the growing deddsit
fied metallic clusters in thin cells. The quasi-two- Experimental results and an analysis of ECD with dense-
dimensional electrolytic cell consists of two glass platesbranched morphology were presented[20], [22], and a
sandwiching two parallel electrodes and an electrolyte. Amechanism for morphology variations stressing the impor-
voltage difference or a current applied between electrodetance of electroconvection effects was proposed. Very re-
produces a ramified deposit. The main variables controllingently the role of convection arising from concentration gra-
the experiment are solution concentration, voltage differ-dients in ECD growth was clearly established].
ence, and cell thickness. Literature shows that when these are The first attempt towards a global macroscopic descrip-
varied growth patterns ranging from fractal to dense-tion of ECD taking into account the main transport mecha-
branched aggregates can be obtained. The morphology variaisms[32] consists in a 2D model for cation concentration
tion has not yet been fully understood. with a stochastic rule for the random deposition of cations.
While the general equations governing ECD with fixed The electroconvective forces were modeled as an array of
electrodegdescribing the interaction of fields due to salt ions Dirac-6 forces distributed over the tips of the growing ag-
concentration gradients, migration, and electroconvegtiongregate, and electroneutrality assumed valid in the remaining
have been analyzed and simulated since long [&jothe  region. This model gave reasonable gualitative results but it
study and simulation of ECD with moving electrodes startedvas limited because of the artificial coupling between elec-
in the 1980s, greatly stimulated by the development of fractroconvective forces and local charges near the growing tips.
tal geometry. Pioneering work at that time gave rise to one Here, extending the results 82], we construct a more
field models, the so called Laplacian growth models, such agealistic transport model, consisting in the Nernst-Planck
the diffusion-limited aggregatidfv] and the dielectric break- equations for the concentration of cations and anions coupled
down [8] models (DBM). Subsequent extensions of the to an equation for the electric potential and the Navier-
diffusion-limited aggregation modg®—14| aimed at the in- Stokes equations for the solvent, and a discretized version of
clusion, in the one field model, of migration or electrocon-that model in the context of a DBM scheme. We also per-
vection field effects. A one field model, however, cannotform a dimensional analysis that notably simplifies the oth-
describe the cooperative effects of the various nonlineaerwise large number of parameters.
fields involved and is therefore severely limited. The plan of the paper is the following. In Sec. Il we
In recent years, considerable advance was achieved in tlexamine the physics of ECD and the growth model describ-
understanding of ECD as a function of the control paramding it. The third section deals with the dimensional analysis.
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The fourth presents a 1D approximation of the previous sysaday constante is the permitivity of the mediumy is the
tem, the fifth a 2D approximation with fixed electrodes, andfyig velocity, P is the pressurey the kinematic viscosity,

the sixth the inclusion of the aggregation process. The lasint is the time coordinaté.is an external force acting over
section draws some general conclusions. the fluid and dependent of the local charge:eES;zC;,
whereE is the electric field.
[l. THE PHYSICS AND MATHEMATICS System(1)-(5), with appropriate initial and boundary con-
OF THE GROWTH MODEL ditions, is valid in a space-time domain defined by
G=[Q(t)x(0,t)], where Q) is a 3D region with boundary

The physical scenario envisaged is ECD of ramified cop-

per clusters in a thin cell, with an unsupported binary elec—r(t); this boundary moves with speed proportional to the
orm of the fluxj; .

trolyte and with constant voltage applied between electrodel . . . .
[30]. The main transport mechanisms are diffusion, migra- Next we assume that the ECD is a quasi-two-dimensional
tion, and electroconvective motion of the ions in a Spaceprocess. This is a gross approximation of reality, only justi-

time dependent incompressible viscous fluid. Secondarggd on the grounds of rendering systéi—(5) more trac-

chemical reactions, density gradients, or heat transfer are n ble_. Furthermore, fpr. convenience, S.ySt@j' (5) is writ-
en in transport-vorticity form by taking the curl of the

considered here. Initially the electrolyte is electrically neutral =" . , . . -
everywhere, with uniform concentration of cations and an_Nawer—Stokes quatlor(ﬂ) and. mtroducmg the vorticity,
ions in space. Applying a voltage difference between elecf’md strea.m fun_ctmnp, thl.JS eliminating the pressure. Th.e
trodes, cations move toward the cathode where they are didy (_:oc_)rdmate in the hor!zonFaI plane assumes the_ positive
charged and aggregate. Anions move toward the ano axis in the Wes_t-east dlrectlon.,.and th.e positwexis in
where they pile up since they cannot exit the solution. Neaf'€ South-north directiofthe positivez axis, normal to the
the cathode, a positive charge is generated as a result &Y Plane, points to the reader; hence, gravity points in the
cation and anion movements and the fact that anions are nffgativez direction. The cathode and anode lie, in they
replaced. Experiments show that the front of the deposit ad®lane, aty=0 andy=d, respectively; thus the electrical
vances at the same rate as anions migrate towards the anofig!d E is parallel to they direction and negative. The system
Near the anode, electroneutrality is maintained by cation§OW becomes

entering the solution from the dissolving anode.

Experimental mea;urements and the_ory .show_that the §+u’é§+v’é§= DcV2C+ ucCV26, (6)
electrolyte near the tips of the aggregation is subject to a at X ay
very large local electric field, of the order &y=1V/10
um=10> V/cm [19], which produces the movement of the oA OA | dA ) )
fluid due to the electroconvection effeg€oulomb forcek E+UA5+UAW:DAV A—upAV-g, (7)

The motion consists in two contrarotative vortices attached
to the tip and moving solidarily with it. The electrolyte is E
: e
neutral everywhere except at the tip, hence the Coulomb V2¢p=——f1, (8)
forces only act when the liquid reaches the tip. In summary, €
the Coulomb forces have a compact support. This is in con-

trast with the Rayleigh-Benard thermal convection problem Jdo  do  Jdw , eldfap of dp
; ; o . : —tu—+tv—=vVWo——| ———— —, 9
in which the gravitational force acts uniformly over the fluid. ot oX ay p\ax dy ay ox
The physical model is described by the Nernst-Planck
equations for the concentration of the copper ions subject to V2= —w. (10)

diffusion, electroconvection, and migration fields, the equa-
tion for electrostatic potential and the Navier-Stokes equa- | (6)—(10) C andA are cation and anion concentrations,

tions for the solvent. These equations EB¢ w and ¢ are the vorticity and stream functions,andv are
JC. fluid velocities, ug =u— uc(dep/dx), Uz =u+ ua(delix),
_t':_v.ji i=1,2, (1) ve=v—puc(ddldy) and vx=u+us(dp/dy) are com-
J pound velocities due to migration and electroconvection, and
. f=z.C—z,A is a scalar forcing function. Written in this
Ji= = #iCiVé=DiVCi+Cy, 2 form it is clear the role played by migration and electrocon-
F vection in the advection of the fluid.
vig=—2 7,C;, 3
! I1l. A DIMENSIONAL ANALYSIS
ov 1 , With the aim of reducing the complexity of the problem
E+V~VV= - ;VP+ vVov+ o (49 described by systert6)—(10), as is common in the related
literature( [33—39), we perform a dimensional analysis, in-
V.v=0. (5) troducing the following new variables :
Here,C;, ji, z, ui, andD; are the concentration, flux, X"=xIXg; Y'=YylXo; Uu'=ulup; v'=vlup;

charge, mobility, and diffusion constants of an ionic species
i, respectively;¢ is the electrostatic potentid; is the Far- C'=C/Cy; A'=AICy; ¢ '=ddlo;
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where the variables with subindex are reference values latenotion due to the electric fieJdn Egs. (11) and (12). A

defined. Systen6)—(10) becomes similar effect is produced increasing the®8c,) numbers.
An increase in the Ri(Fr,) numbers decreases electrocon-
oc - 0C¢ e 1 1 vection (fluid density and dynamic viscosity increasén

201 2 40

Ve eMCC Vie', increase of théVl (M) numbers increases migration. A de-
(11)  crease in the P@(Po,) number increases the source term in

the Poisson equatiofl5) and therefore the curvature of the
oA’ L OA L OA 1 . 1 o2 electric potential; this reduces the width of the boundary
oo FURT o Toat oo 2y~ Re SQ\V A — ReMAA V', layer. Therefore, this number, which is orders of magnitude
(12)  higher than the rest of the dimensionless numbers, is ex-

tremely important since it governs the singular perturbation
nature of the whole system and, in particular, the source term

Vigp'=— P—C’ %A’, (13 in the electrostatic Poisson equation. It also plays a major

® A role in the computational aspect of the problem.

o’ o’ o’
— t u—=+v' — V. A ONE-DIMENSIONAL APPROXIMATION

at ox’ 9y’ WITH FIXED ELECTRODES
_ inw’+i(ﬁ—C’ aiy_ ‘9_0 ‘9;45,) Before embarking in the solution of the fully 2D problem
Re Fre\ gy’ ox’  ax’ ay’ we analyze a simplified 1D problem, followind5]. We

consider a thin rectangular cell with a binary electrolyte, a

(14) constant potential difference applied between electrodes, and
no fluid flow (v=0). To comply with the notation ifil5], in
our 1D approximation the cathode and anode are located at

V' =-w', (19  x=0 andx=x,, respectively. The resulting equations, con-

) sistent with systenill) and(13) are
where S¢=v/D: and Sg=wv»/D, are the Schmidt num-

Fra

1 [0A" 9" A’ 9¢’
ax' gy gy’ ox')’

bers; Re=ugxo/v is the Reynolds numbeM o= v/ ucdo ac’ 1 g°C’ 1 9 _a¢'

andMp=v/uado are a new set of dimensionless numbers 9t~ ReSg ox'2 + ReM¢ W(CW)’ (16)

relating viscous forces to electrostatic potential and

migration forces;ul* =u—(1/ReM¢)(d¢'1dx’), v =v IA! 1 J2A’ 1 ae’

—(1/ReMc)(dg'1dy’),  up*=u+(1/ReMp)(dp'/ox") U ReS 7z ( ) 17
G OX ReM4 ax’ |7 ax

and v,*=v+(1/ReMp)(d¢'/dy’) are compound veloci-

ties due to electroconvection and migration; cPo P’ 1 1

=(epo/xeFzcCo) and Po=(edo/x5FzoCo) are new di- WZ—RC + POAA,' (18

mensionless numbers relating electrostatic potential to solute

concentration and  ky=(puj/ezCop) and Fy System(16) and (17) is written in conservation form as
—(puolezAC0¢o) are the Froude numbers relating viscosity opposed to systent6) and (7) written in divergence form.

to electrostatic potential and concentration. The variaigle Both are equivalent for smooth flows; however, in the pres-
is a reference length scale to be chosen. According to thence of strong gradients the conservation form is preferred.
scale of the process analyzed, it may be the distance betweétere, since there is no fluid flow, the reference velocity in
electrodes, the separation between branches of a growirtge Reynolds number is implicitly defined in terms of the
deposit, or the length of the boundary layer. The variabldength and time reference scales. The initial conditions for
Ug is a reference velocity scale that can be defined in terms=0 are a linear function for the electric potential between
of (a) ug=v/xy, or (b) ug= D/xq, whereD is eitherD, or  x=0 andx=Xxq, and a constant state equal@g for cation

D¢, or(c) up=uEy, whereu is eitheru, or e . Following  and anion concentrations. The boundary conditions chosen
case(c), assumingu and E, are in the order of 10 and  are

10°, respectively, an estimate of, is 0.1 cm/sec, in agree-

ment with typical experimental values. O — kT ,

In real experiments the following physical parameters ¢'(0)= zceqsoln[zcc 01, (19
corresponding to a solution of copper sulphate in distilled
water (0.0IM) are used: uc=5.37X10"*% cn?/Vs, KT
uaA=8.29x10"% cm?/Vs, Da=Dc=10"5 cn/s, ¢'(D)=do= ;g5 InzcC (L], (20
v=1x10"2 cnfls, zc=z,=2, T=293 K, and
Co=1x10'" 1/cn?. Choosing as reference values for 1 JA'(0) 1 d¢'(0)
Xo=1cm, forug=0.1cmk and for ¢o=1V, the dimension- 1al0)=~ ReSg odx’ * ReMAA 0) x
less numbers become: R&0, S¢.=Sc=10°,M,=12.06, (22
Mc=18.06, Pqa=P0:.=9.04<10 %, and Fg=Fr,
=1.2x10"3. An increase in the Re number leaving all other . 1 A1) 1 M’ (1)

. . . ! = — + A
numbers constant increases fluid convection, thus electrocon- Ja(1) ReSg ox’ ReM A'() =0,
vection in Eq.(14). It also increases migratiofconvective (22
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C'(Xg)=A"(Xo), (23 (24) describe the boundary conditions for cation concentra-

tion. Here it is assumed that at X, the solution is electro-

neutral, thus cation equal anion concentrationxAtO, fol-

= (0)=0 (24) lowing [15], diffusion is assumed negligible. In summary,
! ' system(16)—(24) consists in a pair of parabolic equations for

cation and anion concentrations and an elliptic equation for

. . . the electrostatic potential, subject to Dirichlet, Neumann, and
Equations(19) and(20) describe the boundary conditions Fq rier boundary conditions.

for the electrostatic potential where it is assumed electro- gystem(16)—(18) is solved, for each time step, in a uni-
chemical equilibrium at the interfadd5] (k is the Boltz-  form rectangular lattice of sizh (space stepandk (time
mann constant and is the temperatuje Equationg21) and  step, using finite differences and deterministic relaxation
(22) describe the boundary conditions for anion concentratechniques. An implicit conservative scheme of the preceed-

tion. They do not participate in the reaction; they are con-ing system, in the usual notation and dropping the primes,
served in the cell and their flux is null. Equatio(®3) and reads

citi-cd 1 (?:f+ci“+f—zci””) 1 (ci”:f,2<¢?:f—¢i““>—ci“+f,z< nrl_ gt

“1)
_ 1
k  ReSg¢ h? ReMc h? ) (25

A=A (A?IﬁAP*f—zAP“) 1 (AP:f,zwi”:f—¢?”>—AP*11,2<¢-”“—¢?*11)

k  ReSg h? ReM 4 h? (26)
|
¢in++ll+ ¢inj11_ h2f* In the numerical simulations shown next we use the same
in+1: , (27 physical constants as those introduced in Sec. lll, except for
2 C, that is set equal to 8(1/cn?) andza(zc) =1 in order to
where compare our results with those [ib5]. The resulting dimen-
sionless numbers are R&c=1x10°, RexSc=1x10,
1 1 ReXM=1.8622<10°, ReXM,=1.2063< 10°, Poy=Pq
fx=— QC{HH %A{‘“, =4.42<10 3. The Pgy(Poc) value chosen is much higher
A

than the real one. The use of a lower ffBo:) value is

n is the time level. The concentration values with fractionalliMited by numerical stability requirements. The space and
subindex nodes are computed as the average of concentfl'® Stéps are equal to 0.01 cm and 0.01 sec, respectively.
tions at neighboring integer nodes. The boundary conditiond "€ computer code was written in ti@ language and ex-
are approximated in a similar way. The finite difference 8CUted in @ PC486. The initial conditions for cation and an-
scheme leads to a system of algebraic equations for eadf concentrations are uniform distributions equal to 1, and
time step. This system is solved via a successive over relax-

ation iterative method and convergence for every time step is Al T ' - ' ' ' - '
achieved whenever the following condition on the residual is
satisfied: & /)]
1041 nail s 0 041 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
R=mayw ~ " —w'""]<107°;, w=A,C,¢, a X
i 4 T T T
(28 c
. . . . 2r
wherel is the iteration level. Convergence of the evolution- 7
ary process towards the stationary state is achieved if 0 - : - : . : :
(¢} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
b X
R*=maf{w " -w'"<107"; w=A,C,¢. (29 1
i
0.51
The numerical method should be conservative, that is, it
should conserve the following quantity: % o1 02 03 04 05 06 07 08 08 !
c
fXOA(X)dX:C X (30) FIG. 1. Space-time evolution of the 1D approximation fay
0 o%o- cation concentration(b) anion concentration, an@) electrostatic

potential. Snapshots taken &t 10s, t=50s, t=100s, t=200s,
This is satisfied by the difference scheme utilized. t=15005, t=5000s.
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FIG. 2. Steady state solution of the 1D approximation (&r FIG. 3. 1D steady state solutions fta cation concentration,
cation concentration(b) anion concentration, an@) electrostatic (b) anion concentration, andc) electrostatic potential(Po,
potential(Po,=Poc=4.42x10"%). =Poc=4.42< 107 %).

for the electrostatic potential a linear function between 0 and

1. Apparently, with these initial conditions the system cannofayer constitutes a typical example of a singular perturbation
evolve. However, the “one-dimensional electrochemicalproblem. Animaginary cross section of Figaxor 4(b) with
process” is triggered at the first time step when the systena plane &=x;,t) near the anodes, will show a higher than
automatically adjusts the conservation of anions at the cathz ion concentration front advancing with a velocity propor-
ode. tional to the square root of time.

Figures 1a), 1(b), and 1c) shows the space-time varia- The computations shown above are in accordance with
tion of cation and anion concentrations and electrostatic poanalytical and numerical results presented if]. The dif-
tential, respectively. At the stationary state, the depletion oference here lies in the computational method used and in the
ions near the cathode and the creation of a local chargeabsence of numerical oscillatiorifor the range of dimen-
zone termed the Chazalviel layer, is readily seen. Figure Bionless numbers used her&his yields a robust numerical
shows details of the stationary state of the run in Fig. 1 andglgorithm. The value of PgPoc) used is far above the real
Fig. 3 shows the same as in Fig. 2 but for ff@oc) one. For the real value, the Chazalviel layer is reduced to a
=4.42}<10"% (hereCo=1x10" 1/cn?). This produces a step function in the electric potential which cannot be re-
sharper curvature of the electrostatic potential and a narrowolved with the grid used, and thus renders the algorithm ill
Chazalviel layer. Finally, Figs. (), 4(b), and 4c) show conditioned(generation of numerical oscillations and insta-
space-time contour plots for anion and cation concentrationbility). To partially overcome this problem we are currently
and electrostatic potential, for the run in Fig. 1. This figure,developing an adaptive grid algorithm. In spite of its obvious
as well as Fig. 1, illustrates the evolution of the solutionlimitations, the results of the 1D model shown above give a
towards its steady state; the building up of the Chazalvietlear insight into the real problem of ECD.
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FIG. 4. Space-time contour plots fof@ anion concentration,
(b) cation concentration, an@) electrostatic potential. The param-
eters are the same as in Fig. 1.
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FIG. 5. Sketch of the computational domain.

V. A TWO-DIMENSIONAL APPROXIMATION
WITH FIXED ELECTRODES

Studies of the ramified electrodeposit growth aim mainly
to establish the relation between the driving nonlinear field
and the morphology of the deposit. Here, to simulate this
relation we use the experimental results present¢adhand
[22] as a guide. In a first step, as[ib5], we assume a dense
parallel morphology for the ramified electrodeposit and we
study the distribution of concentrations, electrostatic poten-
tial, and fluid velocities. The deposit is replaced by a set of
parallel spaced rectilinear filaments in the form of a comb
and only one filament of the comb is analyzed by symmetry.
The problem is described by systethl)—(15) in the 2D
domain shown in Fig. 5.

Two different cases corresponding to two different scales
will be considered.The first case corresponds to a simulation
of the whole cell, the second one to a small region near the
tip of the filament. For the first case the boundary conditions
for (x,y) at sides 1 and Zcorresponding to the cathode and
the deposijtare

¢(X,Y): - Zced)oln[zcc(x!y)]! (31)
dC B
%(ny)—ol (32)
_ 1 dAxy) 1 IP(X,y)
]A”(X’y):_ReMC any ReSQ,;A(X’y)Ty:O’
(33

wherejan(X,y) is the anion flux andh is the normal to the
boundary. For X,y) on side 3(corresponding to the anoge
the boundary conditions are

kT
PO0y)=1= o InzeClxy)l, (34)

C(x,y)=A(xy) (39
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] B 1  JA(X)Y) 1 A a¢(x,y)_0 dC _dA d¢p
IanXV="Remc “an  TRese” Y " O anan on

(36)

F , ide 3, the bound diti
For (x,y) at sides 4 and %corresponding to the lateral or (xy) on side © boundary conditions are

sideg, the boundary conditions are

dC dA ¢ d
an on on
The remaining boundary conditions are the same as in the
The boundary conditions for the stream function on everypreceding case.

solid boundary are The computational model solves systdfil)—(15), for
each time step, in a fixed domain, in a lattice using finite
kY differences and deterministic relaxation techniques in a simi-
= (?—n=0. lar way to the one described for the 1D approximation. Its

solution is obtained via the system of difference equations

For the second case, imagining now that Fig. 5 represents
a smgll region near thg tip of the filament, the boundary WE+122 aJ-WJf‘, 37)
conditions for &,y) on side 1 are

aof : . YT . T . — y " 7 T . . .
y 278 282
2,59 2.63 =
35F 2.39 B 35F 245
2.19 227
1.99 2.09)
30 - :
1.79 30F 19 2
i 1.59 1.72
e — 1.54
r 1.39 ] L
25 25 1.36

y4o- j ' ' j i ) " ] y40

35} 351

0.911 _ 3o- i
30k 0.0321

25

201 /—\. 2 0.12B
U388 028%

0.321

X . . , s 9.289
5 10 15 20 25 30 35 40

X

FIG. 6. Simulation of the whole cell without fluid flow and with one filament fixed at the cathode. Steady state contour liaearfiam
concentration(b) cation concentratior(c) electrostatic potential, and) forcing functionf [Scc(Sca) =107, M,=12.06,M .=18.62, and
Poa(Pog) =4.43x 107 2].



556 GUILLERMO MARSHALL AND PABLO MOCSKOS 55
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FIG. 7. Simulation of a small region near the tip of a fixed filament without fluid flow. Steady state contour linés fomion
concentration(b) cation concentratior(c) electrostatic potential, and) forcing functionf [Scc(Sca) =107, M,=12.06,M -=18.62, and
Pos(Poc) =4.43<1072].

where | represents the nearest-neighbor site of the site k, the The simulation of a small region near the tip of a fixed
summation ranges over all nearest-neighbor si®g,is a filament without fluid flow is presented next. Figure@)7
vector valued function, whose components are the concer¥b), 7(c), and 7d) show steady state contour lines for anion
trationsC and A, the electrostatic potentiap, the vorticity  and cation concentrations, electrostatic potential and forcing
function w and the stream functiost, anda; is a diagonal function f. Comparing these results with those of Fig. 6 we
matrix whose elements contain the nonlinear coefficients o$ee that the former corresponds to a small window near the
the discretized equations. tip of the deposit in Fig. 6. This is obtained by changing the
A simulation of the whole cell without fluid flow and with boundary conditions as described earlier.
one fixed filament representing a grown deposit on the cath- We turn now to the simulation of a small region near the
ode is shown next. We use a grid of 4@0 cells, and the tip of a fixed filament with fluid flow.The dimensionless
following  dimensionless numbers:  §(Sc,)=10°, numbers are Rel0, Sc(Scy)=10°, M,=12.06,
M,=12.06,Mc=18.62, and Pg(Poc)=4.43x10 2. Fig- Mc=18.62, Pq(Poc)=4.43X10 2, Frc(Fr,)=6.25. Fig-
ures &a), 6(b), 6(c), and &d) show steady state contour lines ures &a), 8(b), 8(c), 8(d), and &e) show steady state contour
for anion and cation concentrations, electrostatic potentidines for anion and cation concentrations, forcing function
and forcing functionf. The forcing functionf possesses an f, electrostatic potential and stream function. The presence
almost compact support, i.e., an approximately bounded dosf the fluid is manifested by the appearance of a pair of
main of (x,y) in which its value is not negligible; this do- contrarotative vortices in Fig.(8). A comparison of Fig. 8
main is near the tip of the filament, as predicted by theorywith Fig. 7 shows that the influence of the fluid over the
and demonstrated by experiments. Note that the contour lines/stem is very weak, due to the high value of the Fr number
are symmetric with respect to the computational filamentused. To see a larger influence we show next similar results
that in the figure was superimposed slightly off center. but for a small Fr number; this implies the use of a lighter
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FIG. 8. Simulation of a small region near the tip of a fixed filament with fluid flow. Steady state contour life@sdaion concentration,
(b) cation concentration(c) forcing function, (d) electrostatic potential, ane) stream function. Re10, S:(Sca) =10, M,=12.06,
Mc=18.62, PQ(Poc)=4.43x 10 2, Frc(Fr,) =6.25.
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FIG. 9. Simulation of a small region near the tip of a fixed filament with fluid flow. Steady state contour lifes$oeam function and
(b) forcing function(same parameters as Fig. 8 but with=r.05).

and less viscous fluid. Figuresa® and 9b) show contours is an extension of a DBM scheme introduced[8] and
of stream function and forcing function for £0.05. A com-  consists in moving the interface at random proportionately to
parison between Fig.(8 and Fig. &) reveals that a de- the flux of cations. The flux of cations at the interface is
crease in the Fr number produces higher vorticity, streanobtained through the solution of the ECD systétit)—(15)
function gradients and thus velocities. A similar comparisonin the initial domain indicated in Fig. 5, with initial and
between forcing functions shows that a decrease in the Hvoundary conditions similar to those of the preceding sec-
number increases the gradient of the forcing functiex  tion. Clearly, our main assumption is that the flux of cations
duces the support of the forcing functjoihus higher gra- entering the deposit governs the aggregation process.
dients of the forcing functions or higher velocities narrow the  The computational model assumes an initial configuration
Chazalviel layer. and solves systertil1)—(15), for each time step, in a fixed
The main result here is that the local space charge prodomain, in a lattice using finite differences and deterministic
duces a pair of contrarotative vortices near the tip of therelaxation techniques in a similar way to the one described
deposit. The right vortex is counter clockwise and positivefor the 2D approximation. The resulting solutiohif " is
by convention. The local space charge has an almost conthen used to modify the domaiadvance the interfagevith
pact support, that is, a small region near the tip where thea DBM schemd8]. This consists in moving the interface at
difference between cations and anions is not negligiblerandom proportionately to the flux of cations, i.e.,
Therefore, the vortex extension and amplitude are modulated
by that difference and by the Fr number, respectively, assum-
ing a constant Re number. Clearly, the presence of electro- k= .
convection decreases the size of the Chazalviel layer, and E licil
thus of the compact support of the space charge. i

_ |jck|

(38

wherek is a nearest-neighbor site to the interfapg,is the
probability of selecting the nearest neighbor &ite advance
the interface, and the summation is over all nearest-neighbor
The final step(for the present worktowards a more re- sitesi to the interfacej is the flux of cations flowing from
alistic description of ECD with dense-branched morphologythe neighbor sit into the aggregation.
is the inclusion of the growth mechanism that yields ramified In this process each new advancement of the interface
deposits. Fluid motion in a typical ECD experiment ariseschanges locally the boundary and hence the solution of sys-
primarily from electric fields combined with buoyancy ef- tem (11)—(15), that must be recalculated, in principle, at ev-
fects. During the first stages of the process the initial instaery time step. In this way the aggregation process, the ionic
bility yielding ramified deposits could be triggered at randomspecies, the electric field and the hydrodynamics are coupled.
locations by the perturbation of the Coulomb forces due tdn summary, the computational interface growth or aggrega-
gravity currents. To mimic this process the absence of tion process consists in adding a new cell at random accord-
buoyancy effectsthe following growth model approxima- ing to the stochastic rule given in the preceding equation.
tion is proposed. The instability is triggered at random loca- The results that follow aim to describe qualitatively the
tions near the cathode or the deposit. That is, the interface afvolution of the interface as an interplay of the main trans-
the deposit moves at random with a stochastic rule. This rulgort mechanisms near the tips of the aggregation: fluid dif-

VI. A TWO-DIMENSIONAL GROWTH MODEL
APPROXIMATION
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FIG. 10. Simulation of the growth in a small region near the tip of one filament. Snapshots of aggregation superimposed to stream
function for (a) 250 sec, (b) 500 sec,(c) 1000 sec, and(d) 2000 sec[Re=10, Sc(Scs)=100, M,=12.06, M-=18.62,
Pos(Poc) =0.0443, Fe(Fra)=6.25].

fusion and convection, ion migration, diffusion and convec-the action of the convective flow deforms the tip of the
tion, following as close as possible the experimentalbranch in such a way that tip splitting can take place. In our
conditions presented i20,22. Initially, the fluid is at rest, growth model fanning is mimicked with a stochastic process.
there is no aggregation except at the bottom layer, where thigure 1Qc) depicts the deformation of the tip due to the
initial instability is mimicked with a deposit of 11 occupied action of the right vortex that yields tip splitting and the birth
cells; the voltage varies linearly from 1 at the tgmode to  of two new branches in Fig. 16). In this last frame one of
0 at the bottom and the deposit. the child branches pinches the right vortex that will split
A simulation of growth in a small region near the tip of (die) in a later time, giving birth to two baby vorticesot
one filament is shown next. The region is represented bghown herg Trees bend because of the vortex influence pro-
a grid of 41x41 cells. The dimensionless numbers usedducing a screening effect in the neighborhogdwer
are Re=10, Sc:(Sc,)=100, M,=12.06, M-=18.62, branches stop growing, i.e., they Hie
Po,(Poc) =0.0443(for numerical stability we have chosen Figures 11a), 11(b), 11(c), and 11d) show a snapshot at
Co=1x10°1/cm?, Da(Dc)=1x10“%cmP/sec) and 2000 sec of the contour lines and aggregation for cation and
Frc(Frp)=6.25. Figure 10 shows a sequence of vortex-tipanion concentrations, electrostatic potential and forcing func-
interactions for different timega) 250 sec,(b) 500 sec(c) tion f. Consider for one moment Fig. (@ and Fig. 10d) as
1000 sec, andd) 2000 sec; the time step is 10 sec and thea simultaneous growth of two adjacent trees and let us imagi-
aggregation speed im=1 cell-time step. Here, by aggrega- narily join these two neighboring filaments with an arch con-
tion speedm we mean the number of cells aggregated peitaining the positive vortex of the left tip and the negative
unit of time. In Fig. 1@a) the tip of the deposit stochastically vortex of the right tip. The inner zone of this arch is depleted
bends to its right, pinching the adjacent vorfég. 10b)]  of ions while the outer zone rapidly reaches the bulk concen-
more pronouncedly. Fanniff@0] is a mechanism by which tration value[as shown in Figs. 1&) and 11b)].
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FIG. 11. Simulation of the growth in a small region near the tip of one filament. Snapshots at 2000 sec of aggregation superimposed to
(a) cation concentrationp) anion concentrationc) electrostatic potential, an@l) forcing functionf (same parameters as in Fig.)10

We consider now the influence on the growth model of awards and be more slender for reasons discussed earlier.
variation in the Fr number and in the aggregation speed Higher m reduces the stochasticity of the syst¢andeeper
The DBM scheme advances the interface at random propoenalysis of the influence of the parametein the morphol-
tionately to the flux of cations. When Coulomb forces andogy of the deposit is deemed relevant and it is being pursued
electroconvection increase, the flux distribution at the tip ofelsewherg This result is in accordance with the experiments
the filament increases too. By construction, the probability opresented ii30] showing that at higher growth speeds, i.e.,
moving the interface and the aggregation process increase larger Coulomb forces, the filament growth is thinner and
the tip. Therefore, in theory and for many time steps andstraighter due to vortex action.
very fine grids, aggregation is enhanced at the tip. In prac- The results of Fig. 12 and 13 show subtle changes in the
tice, however, the coarse grid used in space and time intrastructure of the deposit as a function of Coulomb forthe
duces fluctuations which yield results departing from theoryFr numbe). This is because the variation of the flux at the
To smooth these fluctuations we samptetimes with the interface with Coulomb forces is very small for the range of
same flux distribution, that is, we advangepositions per parameters used here. In addition, there is an artificial vis-
time step. Figure 12 shows snapshots of the deposit witlsosity (due to the coarseness of the grid usétht yields
1000 particles, for F£6.25 and(a) m=10, (b) m=50, (c)  velocities at the interface smaller than those corresponding to
m=100, and(d) m=200; Fig. 13 shows the same but for the Re number used. The use of denser grids diminishes this
Fr=0.01. Comparing in Figs. 12 and 13 deposits for equakffect but is excluded due to computer limitations. To cir-
m we see that the influence of the Fr number is weak butumvent this problem we propose the following mechanism.
increases withm. For instance, the comparison of Fig.(d2  We considerm as a function of Coulomb forces. For in-
and Fig. 18d), shows in the latter a tendency to grow up- stancem= a/Fr, where X «<100 is an adjustment param-
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Coulomb forces(lower Fr numbergyield taller and more
slender aggregates. These results suggest that an increase in
the Fr number produces deposits with more side branching.

Finally, the simulation of growth in a small region near
the tip of one filament in a grid of 150150 cells is shown.
The parameters are the same as in previous runs, but for
Fr=6.25 and m=1. Figure 14 depicts snapshots at
t=20 000 sec for@ deposit and stream function contours
and (b) deposit and velocity map. These results reveal a
streamline pattern with a pair of contrarotative vortices and a
funnellike shape through which the copper ions are sucked
into the tip. Behind the vortices the fluid is at rest.

VII. CONCLUSIONS

We presented theoretical and numerical results of a mac-
roscopic model for the study of ECD in a 2D linear cell with
a constant potential between electrodes. Our aim was to ap-
proximately describe dense-branched morphology experi-
ments presented in the literature, whose growth is governed
by the coupled effects of diffusion, migration, and electro-
convection. With a proper variation of the set of dimension-
less numbers introduced it is possible to obtain a streamline
pattern showing the existence of local charges near the tips
of the filaments, the associated pair of contrarotating vortices
and a funnellike shape through which the cations are sucked
into the tip. The genesis of the ramified deposit is elucidated
through the analysis of the evolution of the vortex-tip inter-
action. This evolution shows the stretching and division of
vortices and the concomitant birth, splitting, fanning, and
death of tip filaments. There is a reasonably qualitative
agreement between the streamline, ion concentrations, and
electrostatic potential computational results and the experi-
mental results presented in the literature.
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