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Growth model for ramified electrochemical deposition in the presence
of diffusion, migration, and electroconvection
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A growth pattern formation model for the macroscopic description of ramified electrochemical deposition is
presented. The model describes the diffusive, migration and electroconvective motion of ions and its deposition
in thin cells through the evolutionary two-dimensional Nernst-Planck equations for cation and anion concen-
tration, the Poisson equation for the electric field, the Navier-Stokes equations for the laminar fluid flow and a
dielectric breakdown model scheme for the random deposition of ions. A new set of dimensionless numbers
governing the model regimes is introduced. We present numerical results showing that, for a given set of
dimensionless numbers, the electroconvective forces produce vortex-tip interaction yielding a basic growth
pattern formation mechanism, i.e., tip splitting and fanning. This mechanism gives a reasonable picture of
reality. @S1063-651X~96!01610-8#

PACS number~s!: 68.70.1w, 82.45.1z, 47.65.1a, 02.70.Bf
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I. INTRODUCTION

Growth pattern formation, that is, the unstable growth
interfaces, is a common phenomenon in a wide range
problems from physics to biology. It produces complex g
ometries of fractal or dendritic character and chaotic patte
@1–5# and has been extensively studied in the context of
from equilibrium phenomena.

An example is electrochemical deposition~ECD! of rami-
fied metallic clusters in thin cells. The quasi-tw
dimensional electrolytic cell consists of two glass pla
sandwiching two parallel electrodes and an electrolyte
voltage difference or a current applied between electro
produces a ramified deposit. The main variables control
the experiment are solution concentration, voltage diff
ence, and cell thickness. Literature shows that when these
varied growth patterns ranging from fractal to dens
branched aggregates can be obtained. The morphology v
tion has not yet been fully understood.

While the general equations governing ECD with fix
electrodes~describing the interaction of fields due to salt io
concentration gradients, migration, and electroconvect!
have been analyzed and simulated since long ago@6#, the
study and simulation of ECD with moving electrodes star
in the 1980s, greatly stimulated by the development of fr
tal geometry. Pioneering work at that time gave rise to o
field models, the so called Laplacian growth models, such
the diffusion-limited aggregation@7# and the dielectric break
down @8# models ~DBM!. Subsequent extensions of th
diffusion-limited aggregation model@9–14# aimed at the in-
clusion, in the one field model, of migration or electroco
vection field effects. A one field model, however, cann
describe the cooperative effects of the various nonlin
fields involved and is therefore severely limited.

In recent years, considerable advance was achieved in
understanding of ECD as a function of the control para
551063-651X/97/55~1!/549~15!/$10.00
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eters through theoretical analysis and physical and nume
experiments@15–31#. In particular, the study of ECD with a
one-dimensional~1D! model of the set of electrohydrody
namic equations describing the coupling of migration, diff
sion, and electroconvection fields revealed the existence
very thin boundary layer around the growing electrodepo
where electroneutrality is violated@15#. This layer, that pro-
duces a convective motion on the fluid, is modeled a
charge concentrated at the tips of the growing deposit@19#.
Experimental results and an analysis of ECD with den
branched morphology were presented in@20#, @22#, and a
mechanism for morphology variations stressing the imp
tance of electroconvection effects was proposed. Very
cently the role of convection arising from concentration g
dients in ECD growth was clearly established@31#.

The first attempt towards a global macroscopic desc
tion of ECD taking into account the main transport mech
nisms @32# consists in a 2D model for cation concentratio
with a stochastic rule for the random deposition of catio
The electroconvective forces were modeled as an arra
Dirac-d forces distributed over the tips of the growing a
gregate, and electroneutrality assumed valid in the remain
region. This model gave reasonable qualitative results bu
was limited because of the artificial coupling between el
troconvective forces and local charges near the growing t

Here, extending the results of@32#, we construct a more
realistic transport model, consisting in the Nernst-Plan
equations for the concentration of cations and anions cou
to an equation for the electric potential and the Navi
Stokes equations for the solvent, and a discretized versio
that model in the context of a DBM scheme. We also p
form a dimensional analysis that notably simplifies the o
erwise large number of parameters.

The plan of the paper is the following. In Sec. II w
examine the physics of ECD and the growth model desc
ing it. The third section deals with the dimensional analys
549 © 1997 The American Physical Society
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550 55GUILLERMO MARSHALL AND PABLO MOCSKOS
The fourth presents a 1D approximation of the previous s
tem, the fifth a 2D approximation with fixed electrodes, a
the sixth the inclusion of the aggregation process. The
section draws some general conclusions.

II. THE PHYSICS AND MATHEMATICS
OF THE GROWTH MODEL

The physical scenario envisaged is ECD of ramified c
per clusters in a thin cell, with an unsupported binary el
trolyte and with constant voltage applied between electro
@30#. The main transport mechanisms are diffusion, mig
tion, and electroconvective motion of the ions in a spa
time dependent incompressible viscous fluid. Second
chemical reactions, density gradients, or heat transfer are
considered here. Initially the electrolyte is electrically neut
everywhere, with uniform concentration of cations and a
ions in space. Applying a voltage difference between el
trodes, cations move toward the cathode where they are
charged and aggregate. Anions move toward the an
where they pile up since they cannot exit the solution. N
the cathode, a positive charge is generated as a resu
cation and anion movements and the fact that anions are
replaced. Experiments show that the front of the deposit
vances at the same rate as anions migrate towards the a
Near the anode, electroneutrality is maintained by cati
entering the solution from the dissolving anode.

Experimental measurements and theory show that
electrolyte near the tips of the aggregation is subject t
very large local electric field, of the order ofE051V/10
mm5103 V/cm @19#, which produces the movement of th
fluid due to the electroconvection effect~Coulomb forces!.
The motion consists in two contrarotative vortices attach
to the tip and moving solidarily with it. The electrolyte
neutral everywhere except at the tip, hence the Coulo
forces only act when the liquid reaches the tip. In summa
the Coulomb forces have a compact support. This is in c
trast with the Rayleigh-Benard thermal convection probl
in which the gravitational force acts uniformly over the flui

The physical model is described by the Nernst-Plan
equations for the concentration of the copper ions subjec
diffusion, electroconvection, and migration fields, the eq
tion for electrostatic potential and the Navier-Stokes eq
tions for the solvent. These equations are@6#

]Ci

]t
52“• j i i51,2, ~1!

j i52m iCi“f2Di“Ci1Civ, ~2!

¹2f5
F

e (i ziCi , ~3!

]v

]t
1v•“v52

1

r
“P1n¹2v1

f

r
, ~4!

“•v50. ~5!

Here,Ci , j i , zi , m i , andDi are the concentration, flux
charge, mobility, and diffusion constants of an ionic spec
i , respectively;f is the electrostatic potential,F is the Far-
s-
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aday constant,e is the permitivity of the medium,v is the
fluid velocity, P is the pressure,n the kinematic viscosity,
andt is the time coordinate.f is an external force acting ove
the fluid and dependent of the local charge:f5eE( iziCi ,
whereE is the electric field.

System~1!-~5!, with appropriate initial and boundary con
ditions, is valid in a space-time domain defined
G5†V„t…x„0,t…‡, whereV is a 3D region with boundary
G(t); this boundary moves with speed proportional to t
norm of the fluxj i .

Next we assume that the ECD is a quasi-two-dimensio
process. This is a gross approximation of reality, only jus
fied on the grounds of rendering system~1!–~5! more trac-
table. Furthermore, for convenience, system~1!–~5! is writ-
ten in transport-vorticity form by taking the curl of th
Navier-Stokes equations~4! and introducing the vorticityv
and stream functionc, thus eliminating the pressure. Th
x-y coordinate in the horizontal plane assumes the posi
x axis in the west-east direction, and the positivey axis in
the south-north direction~the positivez axis, normal to the
x-y plane, points to the reader; hence, gravity points in
negativez direction!. The cathode and anode lie, in thex-y
plane, aty50 and y5d, respectively; thus the electrica
field E is parallel to they direction and negative. The syste
now becomes

]C

]t
1uC*

]C

]x
1vC*

]C

]y
5DC¹2C1mCC¹2f, ~6!

]A

]t
1uA*

]A

]x
1vA*

]A

]y
5DA¹2A2mAA¹2f, ~7!

¹2f52
Fe

e
f , ~8!

]v

]t
1u

]v

]x
1v

]v

]y
5n¹2v2

e

r S ] f

]x

]f

]y
2

] f

]y

]f

]x D , ~9!

¹2c52v. ~10!

In ~6!–~10! C andA are cation and anion concentration
v andc are the vorticity and stream functions,u andv are
fluid velocities, uC*5u2mC(]f/]x), uA*5u1mA(]f/]x),
vC*5v2mC(]f/]y) and vA*5u1mA(]f/]y) are com-
pound velocities due to migration and electroconvection, a
f5zCC2zAA is a scalar forcing function. Written in this
form it is clear the role played by migration and electroco
vection in the advection of the fluid.

III. A DIMENSIONAL ANALYSIS

With the aim of reducing the complexity of the proble
described by system~6!–~10!, as is common in the relate
literature~ @33–35#!, we perform a dimensional analysis, in
troducing the following new variables :

x85x/x0 ; y85y/x0 ; u85u/u0 ; v85v/u0 ;

C85C/C0 ; A85A/C0 ; f85f/f0 ;
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where the variables with subindex are reference values
defined. System~6!–~10! becomes

]C8

]t8
1uC8*

]C8

]x8
1vC8*

]C8

]y8
5

1

ReScC
¹2C81

1

ReMC
C8¹2f8,

~11!

]A8

]t8
1uA8*

]A8

]x8
1vA8*

]A8

]y8
5

1

ReScA
¹2A82

1

ReMA
A8¹2f8,

~12!

¹2f852
1

PoC
C81

1

PoA
A8, ~13!

]v8

]t8
1u8

]v8

]x8
1v8

]v8

]y8

5
1

Re
¹2v81

1

FrC
S ]C8

]y8

]f8

]x8
2

]C8

]x8

]f8

]y8 D
1

1

FrA
S ]A8

]x8

]f8

]y
2

]A8

]y8

]f8

]x8 D , ~14!

¹2c852v8, ~15!

where ScC5n/DC and ScA5n/DA are the Schmidt num
bers; Re5u0x0 /n is the Reynolds number,MC5n/mCf0
andMA5n/mAf0 are a new set of dimensionless numbe
relating viscous forces to electrostatic potential a
migration forces;uC8*5u2(1/ReMC)(]f8/]x8), vC8*5v
2(1/ReMC)(]f8/]y8), uA8*5u1(1/ReMA)(]f8/]x8)
and vA8*5v1(1/ReMA)(]f8/]y8) are compound veloci-
ties due to electroconvection and migration; PC
5(ef0 /x0

2FzCC0) and PoA5(ef0 /x0
2FzAC0) are new di-

mensionless numbers relating electrostatic potential to so
concentration and FrC5(ru0

2/ezCC0f0) and FrA
5(ru0

2/ezAC0f0) are the Froude numbers relating viscos
to electrostatic potential and concentration. The variablex0
is a reference length scale to be chosen. According to
scale of the process analyzed, it may be the distance betw
electrodes, the separation between branches of a gro
deposit, or the length of the boundary layer. The varia
u0 is a reference velocity scale that can be defined in te
of ~a! u05n/x0, or ~b! u05 D/x0, whereD is eitherDA or
DC , or ~c! u05mE0, wherem is eithermA ormC . Following
case~c!, assumingm andE0 are in the order of 1024 and
103, respectively, an estimate ofu0 is 0.1 cm/sec, in agree
ment with typical experimental values.

In real experiments the following physical paramete
corresponding to a solution of copper sulphate in distil
water ~0.01M ) are used: mC55.3731024 cm2/Vs,
mA58.2931024 cm2/Vs, DA5DC51025 cm2/s,
n5131022 cm2/s, zC5zA52, T5293 K, and
C05131018 1/cm3. Choosing as reference values f
x051cm, foru050.1cm/s and forf051V, the dimension-
less numbers become: Re510, ScC5ScA5103,MA512.06,
MC518.06, PoA5PoC59.04310211, and FrC5FrA
51.231023. An increase in the Re number leaving all oth
numbers constant increases fluid convection, thus electro
vection in Eq.~14!. It also increases migration~convective
er
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motion due to the electric field! in Eqs. ~11! and ~12!. A
similar effect is produced increasing the ScC~ScA) numbers.
An increase in the FrC~FrA) numbers decreases electroco
vection ~fluid density and dynamic viscosity increase!. An
increase of theMA(MC) numbers increases migration. A de
crease in the PoC ~PoA) number increases the source term
the Poisson equation~15! and therefore the curvature of th
electric potential; this reduces the width of the bounda
layer. Therefore, this number, which is orders of magnitu
higher than the rest of the dimensionless numbers, is
tremely important since it governs the singular perturbat
nature of the whole system and, in particular, the source t
in the electrostatic Poisson equation. It also plays a ma
role in the computational aspect of the problem.

IV. A ONE-DIMENSIONAL APPROXIMATION
WITH FIXED ELECTRODES

Before embarking in the solution of the fully 2D proble
we analyze a simplified 1D problem, following@15#. We
consider a thin rectangular cell with a binary electrolyte
constant potential difference applied between electrodes,
no fluid flow (v50). To comply with the notation in@15#, in
our 1D approximation the cathode and anode are locate
x50 andx5x0, respectively. The resulting equations, co
sistent with system~11! and ~13! are

]C8

]t8
5

1

ReScC

]2C8

]x82
1

1

ReMC

]

]x8 SC ]f8

]x8 D , ~16!

]A8

]t8
5

1

ReScA

]2A8

]x82
2

1

ReMA

]

]x8 SA]f8

]x8 D , ~17!

]2f8

]x82
52

1

PoC
C81

1

PoA
A8. ~18!

System~16! and ~17! is written in conservation form as
opposed to system~6! and ~7! written in divergence form.
Both are equivalent for smooth flows; however, in the pr
ence of strong gradients the conservation form is prefer
Here, since there is no fluid flow, the reference velocity
the Reynolds number is implicitly defined in terms of th
length and time reference scales. The initial conditions
t50 are a linear function for the electric potential betwe
x50 andx5x0, and a constant state equal toC0 for cation
and anion concentrations. The boundary conditions cho
are

f8~0!52
kT

zCef0
ln@zCC8~0!#, ~19!

f8~1!5f02
kT

zCef0
ln@zCC8~1!#, ~20!

j A8 ~0!52
1

ReScA

]A8~0!

]x8
1

1

ReMA
A8~0!

]f8~0!

]x8
50,

~21!

j A8 ~1!52
1

ReScA

]A8~1!

]x8
1

1

ReMA
A8~1!

]f8~1!

]x8
50,

~22!
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C8~x0!5A8~x0!, ~23!

]C8

]x8
~0!50. ~24!

Equations~19! and~20! describe the boundary condition
for the electrostatic potential where it is assumed elec
chemical equilibrium at the interface@15# (k is the Boltz-
mann constant andT is the temperature!. Equations~21! and
~22! describe the boundary conditions for anion concen
tion. They do not participate in the reaction; they are co
served in the cell and their flux is null. Equations~23! and
a
n
on
ce
a
la
p
l i

n

,

-

-
-

~24! describe the boundary conditions for cation concen
tion. Here it is assumed that atx5x0 the solution is electro-
neutral, thus cation equal anion concentration. Atx50, fol-
lowing @15#, diffusion is assumed negligible. In summar
system~16!–~24! consists in a pair of parabolic equations f
cation and anion concentrations and an elliptic equation
the electrostatic potential, subject to Dirichlet, Neumann, a
Fourier boundary conditions.

System~16!–~18! is solved, for each time step, in a un
form rectangular lattice of sizeh ~space step! and k ~time
step!, using finite differences and deterministic relaxati
techniques. An implicit conservative scheme of the prece
ing system, in the usual notation and dropping the prim
reads
Ci
n112Ci

n

k
5

1

ReScC
SCi11

n111Ci21
n1122Ci

n11

h2 D 1
1

ReMC
SCi11/2

n11 ~f i11
n112f i

n11!2Ci21/2
n11 ~f i

n112f i21
n11!

h2 D , ~25!

Ai
n112Ai

n

k
5

1

ReScA
SAi11

n111Ai21
n1122Ai

n11

h2 D 2
1

ReMA
SAi11/2

n11 ~f i11
n112f i

n11!2Ai21/2
n11 ~f i

n112f i21
n11!

h2 D , ~26!
e
for

d
ly.

-
d

f i
n115

f i11
n111f i21

n112h2f *

2
, ~27!

where

f *52
1

PoC
Ci
n111

1

PoA
Ai
n11 ,

n is the time level. The concentration values with fraction
subindex nodes are computed as the average of conce
tions at neighboring integer nodes. The boundary conditi
are approximated in a similar way. The finite differen
scheme leads to a system of algebraic equations for e
time step. This system is solved via a successive over re
ation iterative method and convergence for every time ste
achieved whenever the following condition on the residua
satisfied:

R5max
i

@wi
n11,l112wi

n11,l #,1025; w5A,C,f,

~28!

wherel is the iteration level. Convergence of the evolutio
ary process towards the stationary state is achieved if

R*5max
i

@wi
n11,l2wi

n,l #,1027; w5A,C,f. ~29!

The numerical method should be conservative, that is
should conserve the following quantity:

E
0

x0
A~x!dx5C0x0 . ~30!

This is satisfied by the difference scheme utilized.
l
tra-
s

ch
x-
is
s

-

it

In the numerical simulations shown next we use the sam
physical constants as those introduced in Sec. III, except
C0 that is set equal to 10

10(1/cm3) andzA(zC)51 in order to
compare our results with those in@15#. The resulting dimen-
sionless numbers are Re3ScC513105, Re3ScA513105,
Re3MC51.86223103, Re3MA51.20633103, PoA5PoC
54.4231023. The PoA~PoC) value chosen is much higher
than the real one. The use of a lower PoA~PoC) value is
limited by numerical stability requirements. The space an
time steps are equal to 0.01 cm and 0.01 sec, respective
The computer code was written in theC language and ex-
ecuted in a PC486. The initial conditions for cation and an
ion concentrations are uniform distributions equal to 1, an

FIG. 1. Space-time evolution of the 1D approximation for~a!
cation concentration,~b! anion concentration, and~c! electrostatic
potential. Snapshots taken att510s, t550s, t5100s, t5200s,
t51500s, t55000s.
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for the electrostatic potential a linear function between 0 a
1. Apparently, with these initial conditions the system cann
evolve. However, the ‘‘one-dimensional electrochemic
process’’ is triggered at the first time step when the syste
automatically adjusts the conservation of anions at the ca
ode.

Figures 1~a!, 1~b!, and 1~c! shows the space-time varia-
tion of cation and anion concentrations and electrostatic p
tential, respectively. At the stationary state, the depletion
ions near the cathode and the creation of a local charg
zone termed the Chazalviel layer, is readily seen. Figure
shows details of the stationary state of the run in Fig. 1 a
Fig. 3 shows the same as in Fig. 2 but for PoA~PoC)
54.4231024 ~hereC05131011 1/cm3). This produces a
sharper curvature of the electrostatic potential and a narr
Chazalviel layer. Finally, Figs. 4~a!, 4~b!, and 4~c! show
space-time contour plots for anion and cation concentratio
and electrostatic potential, for the run in Fig. 1. This figur
as well as Fig. 1, illustrates the evolution of the solutio
towards its steady state; the building up of the Chazalv

FIG. 2. Steady state solution of the 1D approximation for~a!
cation concentration,~b! anion concentration, and~c! electrostatic
potential~PoA5PoC54.4231023).
d
t
l
m
h-

o-
f
ed
2
d

w

ns
,

l

layer constitutes a typical example of a singular perturbati
problem. An imaginary cross section of Fig. 4~a! or 4~b! with
a plane (x5xi ,t) near the anodes, will show a higher tha
C0 ion concentration front advancing with a velocity propor
tional to the square root of time.

The computations shown above are in accordance w
analytical and numerical results presented in@15#. The dif-
ference here lies in the computational method used and in
absence of numerical oscillations~for the range of dimen-
sionless numbers used here!. This yields a robust numerical
algorithm. The value of PoA~PoC) used is far above the real
one. For the real value, the Chazalviel layer is reduced to
step function in the electric potential which cannot be r
solved with the grid used, and thus renders the algorithm
conditioned~generation of numerical oscillations and insta
bility !. To partially overcome this problem we are currentl
developing an adaptive grid algorithm. In spite of its obviou
limitations, the results of the 1D model shown above give
clear insight into the real problem of ECD.

FIG. 3. 1D steady state solutions for~a! cation concentration,
~b! anion concentration, and~c! electrostatic potential~PoA
5PoC54.4231024).
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FIG. 4. Space-time contour plots for:~a! anion concentration,
~b! cation concentration, and~c! electrostatic potential. The param-
eters are the same as in Fig. 1.
V. A TWO-DIMENSIONAL APPROXIMATION
WITH FIXED ELECTRODES

Studies of the ramified electrodeposit growth aim main
to establish the relation between the driving nonlinear fi
and the morphology of the deposit. Here, to simulate t
relation we use the experimental results presented in@20# and
@22# as a guide. In a first step, as in@15#, we assume a dens
parallel morphology for the ramified electrodeposit and
study the distribution of concentrations, electrostatic pot
tial, and fluid velocities. The deposit is replaced by a set
parallel spaced rectilinear filaments in the form of a com
and only one filament of the comb is analyzed by symme
The problem is described by system~11!–~15! in the 2D
domain shown in Fig. 5.

Two different cases corresponding to two different sca
will be considered.The first case corresponds to a simula
of the whole cell, the second one to a small region near
tip of the filament. For the first case the boundary conditio
for (x,y) at sides 1 and 2~corresponding to the cathode an
the deposit! are

f~x,y!52
kT

zCef0
ln@zCC~x,y!#, ~31!

]C

]n
~x,y!50, ~32!

j An~x,y!52
1

ReMC

]A~x,y!

]n
1

1

ReScC
A~x,y!

]f~x,y!

]n
50,

~33!

where j An(x,y) is the anion flux andn is the normal to the
boundary. For (x,y) on side 3~corresponding to the anode!,
the boundary conditions are

f~x,y!512
kT

zCef0
ln@zCC~x,y!#, ~34!

C~x,y!5A~x,y! ~35!

FIG. 5. Sketch of the computational domain.
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j An~x,y!52
1

ReMC

]A~x,y!

]n
1

1

ReScC
A~x,y!

]f~x,y!

]n
50.

~36!

For (x,y) at sides 4 and 5~corresponding to the latera
sides!, the boundary conditions are

]C

]n
5

]A

]n
5

]f

]n
50.

The boundary conditions for the stream function on ev
solid boundary are

c5
]c

]n
50.

For the second case, imagining now that Fig. 5 repres
a small region near the tip of the filament, the bound
conditions for (x,y) on side 1 are
y

ts
y

]C

]n
5

]A

]n
5

]f

]n
50.

For (x,y) on side 3, the boundary conditions are

C5A51,
]f

]n
50.

The remaining boundary conditions are the same as in
preceding case.

The computational model solves system~11!–~15!, for
each time step, in a fixed domain, in a lattice using fin
differences and deterministic relaxation techniques in a s
lar way to the one described for the 1D approximation.
solution is obtained via the system of difference equatio

Wk
n115(

j
ajW j

n , ~37!
FIG. 6. Simulation of the whole cell without fluid flow and with one filament fixed at the cathode. Steady state contour lines for~a! anion
concentration,~b! cation concentration,~c! electrostatic potential, and~d! forcing function f @ScC~ScA)5102, MA512.06,MC518.62, and
PoA~PoC)54.4331022#.
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FIG. 7. Simulation of a small region near the tip of a fixed filament without fluid flow. Steady state contour lines for~a! anion
concentration,~b! cation concentration,~c! electrostatic potential, and~d! forcing function f @ScC~ScA)5102, MA512.06,MC518.62, and
PoA~PoC)54.4331022#.
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where j represents the nearest-neighbor site of the site k
summation ranges over all nearest-neighbor sites,Wk is a
vector valued function, whose components are the conc
trationsC andA, the electrostatic potentialf, the vorticity
function v and the stream functionc, andaj is a diagonal
matrix whose elements contain the nonlinear coefficients
the discretized equations.

A simulation of the whole cell without fluid flow and with
one fixed filament representing a grown deposit on the c
ode is shown next. We use a grid of 40340 cells, and the
following dimensionless numbers: ScC(ScA)5102,
MA512.06,MC518.62, and PoA~PoC)54.4331022. Fig-
ures 6~a!, 6~b!, 6~c!, and 6~d! show steady state contour line
for anion and cation concentrations, electrostatic poten
and forcing functionf . The forcing functionf possesses a
almost compact support, i.e., an approximately bounded
main of (x,y) in which its value is not negligible; this do
main is near the tip of the filament, as predicted by the
and demonstrated by experiments. Note that the contour l
are symmetric with respect to the computational filame
that in the figure was superimposed slightly off center.
he

n-

f

h-

al

o-

y
es
t,

The simulation of a small region near the tip of a fixe
filament without fluid flow is presented next. Figures 7~a!,
7~b!, 7~c!, and 7~d! show steady state contour lines for anio
and cation concentrations, electrostatic potential and forc
function f . Comparing these results with those of Fig. 6 w
see that the former corresponds to a small window near
tip of the deposit in Fig. 6. This is obtained by changing t
boundary conditions as described earlier.

We turn now to the simulation of a small region near t
tip of a fixed filament with fluid flow.The dimensionles
numbers are Re510, ScC~ScA)5102, MA512.06,
MC518.62, PoA~PoC)54.4331022, FrC~FrA)56.25. Fig-
ures 8~a!, 8~b!, 8~c!, 8~d!, and 8~e! show steady state contou
lines for anion and cation concentrations, forcing functi
f , electrostatic potential and stream function. The prese
of the fluid is manifested by the appearance of a pair
contrarotative vortices in Fig. 8~e!. A comparison of Fig. 8
with Fig. 7 shows that the influence of the fluid over th
system is very weak, due to the high value of the Fr num
used. To see a larger influence we show next similar res
but for a small Fr number; this implies the use of a ligh
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FIG. 8. Simulation of a small region near the tip of a fixed filament with fluid flow. Steady state contour lines for~a! anion concentration,
~b! cation concentration,~c! forcing function, ~d! electrostatic potential, and~e! stream function. Re510, ScC~ScA)5102, MA512.06,
MC518.62, PoA~PoC)54.4331022, FrC~FrA)56.25.
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FIG. 9. Simulation of a small region near the tip of a fixed filament with fluid flow. Steady state contour lines for~a! stream function and
~b! forcing function~same parameters as Fig. 8 but with Fr50.05!.
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and less viscous fluid. Figures 9~a! and 9~b! show contours
of stream function and forcing function for Fr50.05. A com-
parison between Fig. 9~a! and Fig. 8~e! reveals that a de
crease in the Fr number produces higher vorticity, stre
function gradients and thus velocities. A similar comparis
between forcing functions shows that a decrease in the
number increases the gradient of the forcing function~re-
duces the support of the forcing function!. Thus higher gra-
dients of the forcing functions or higher velocities narrow t
Chazalviel layer.

The main result here is that the local space charge
duces a pair of contrarotative vortices near the tip of
deposit. The right vortex is counter clockwise and posit
by convention. The local space charge has an almost c
pact support, that is, a small region near the tip where
difference between cations and anions is not negligib
Therefore, the vortex extension and amplitude are modula
by that difference and by the Fr number, respectively, ass
ing a constant Re number. Clearly, the presence of elec
convection decreases the size of the Chazalviel layer,
thus of the compact support of the space charge.

VI. A TWO-DIMENSIONAL GROWTH MODEL
APPROXIMATION

The final step~for the present work! towards a more re-
alistic description of ECD with dense-branched morpholo
is the inclusion of the growth mechanism that yields ramifi
deposits. Fluid motion in a typical ECD experiment aris
primarily from electric fields combined with buoyancy e
fects. During the first stages of the process the initial ins
bility yielding ramified deposits could be triggered at rando
locations by the perturbation of the Coulomb forces due
gravity currents. To mimic this process~in the absence o
buoyancy effects! the following growth model approxima
tion is proposed. The instability is triggered at random lo
tions near the cathode or the deposit. That is, the interfac
the deposit moves at random with a stochastic rule. This
m
n
Fr

o-
e
e
m-
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-
o-
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-
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is an extension of a DBM scheme introduced in@8# and
consists in moving the interface at random proportionately
the flux of cations. The flux of cations at the interface
obtained through the solution of the ECD system~11!–~15!
in the initial domain indicated in Fig. 5, with initial and
boundary conditions similar to those of the preceding s
tion. Clearly, our main assumption is that the flux of catio
entering the deposit governs the aggregation process.

The computational model assumes an initial configurat
and solves system~11!–~15!, for each time step, in a fixed
domain, in a lattice using finite differences and determinis
relaxation techniques in a similar way to the one describ
for the 2D approximation. The resulting solutionWk

n11 is
then used to modify the domain~advance the interface! with
a DBM scheme@8#. This consists in moving the interface a
random proportionately to the flux of cations, i.e.,

pk5
u j cku

(
i

u j ciu
, ~38!

wherek is a nearest-neighbor site to the interface,pk is the
probability of selecting the nearest neighbor sitek to advance
the interface, and the summation is over all nearest-neigh
sitesi to the interface,j ck is the flux of cations flowing from
the neighbor sitek into the aggregation.

In this process each new advancement of the interf
changes locally the boundary and hence the solution of
tem ~11!–~15!, that must be recalculated, in principle, at e
ery time step. In this way the aggregation process, the io
species, the electric field and the hydrodynamics are coup
In summary, the computational interface growth or aggre
tion process consists in adding a new cell at random acc
ing to the stochastic rule given in the preceding equation

The results that follow aim to describe qualitatively th
evolution of the interface as an interplay of the main tra
port mechanisms near the tips of the aggregation: fluid
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FIG. 10. Simulation of the growth in a small region near the tip of one filament. Snapshots of aggregation superimposed t
function for ~a! 250 sec, ~b! 500 sec, ~c! 1000 sec, and~d! 2000 sec @Re510, ScC~ScA)5100, MA512.06, MC518.62,
PoA~PoC)50.0443, FrC~FrA)56.25#.
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fusion and convection, ion migration, diffusion and conve
tion, following as close as possible the experimen
conditions presented in@20,22#. Initially, the fluid is at rest,
there is no aggregation except at the bottom layer, where
initial instability is mimicked with a deposit of 11 occupie
cells; the voltage varies linearly from 1 at the top~anode! to
0 at the bottom and the deposit.

A simulation of growth in a small region near the tip
one filament is shown next. The region is represented
a grid of 41341 cells. The dimensionless numbers us
are Re510, ScC~ScA)5100, MA512.06, MC518.62,
PoA~PoC)50.0443~for numerical stability we have chose
C0513109 1/cm3, DA(DC)5131024 cm2/sec) and
FrC~FrA)56.25. Figure 10 shows a sequence of vortex-
interactions for different times:~a! 250 sec,~b! 500 sec,~c!
1000 sec, and~d! 2000 sec; the time step is 10 sec and
aggregation speed ism51 cell-time step. Here, by aggrega
tion speedm we mean the number of cells aggregated
unit of time. In Fig. 10~a! the tip of the deposit stochasticall
bends to its right, pinching the adjacent vortex@Fig. 10~b!#
more pronouncedly. Fanning@30# is a mechanism by which
-
l

he

y
d

e

r

the action of the convective flow deforms the tip of th
branch in such a way that tip splitting can take place. In o
growth model fanning is mimicked with a stochastic proce
Figure 10~c! depicts the deformation of the tip due to th
action of the right vortex that yields tip splitting and the bir
of two new branches in Fig. 10~d!. In this last frame one of
the child branches pinches the right vortex that will sp
~die! in a later time, giving birth to two baby vortices~not
shown here!. Trees bend because of the vortex influence p
ducing a screening effect in the neighborhood~lower
branches stop growing, i.e., they die!.

Figures 11~a!, 11~b!, 11~c!, and 11~d! show a snapshot a
2000 sec of the contour lines and aggregation for cation
anion concentrations, electrostatic potential and forcing fu
tion f . Consider for one moment Fig. 10~c! and Fig. 10~d! as
a simultaneous growth of two adjacent trees and let us im
narily join these two neighboring filaments with an arch co
taining the positive vortex of the left tip and the negati
vortex of the right tip. The inner zone of this arch is deplet
of ions while the outer zone rapidly reaches the bulk conc
tration value@as shown in Figs. 11~a! and 11~b!#.
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FIG. 11. Simulation of the growth in a small region near the tip of one filament. Snapshots at 2000 sec of aggregation superim
~a! cation concentration,~b! anion concentration,~c! electrostatic potential, and~d! forcing function f ~same parameters as in Fig. 10!.
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We consider now the influence on the growth model o
variation in the Fr number and in the aggregation speedm.
The DBM scheme advances the interface at random pro
tionately to the flux of cations. When Coulomb forces a
electroconvection increase, the flux distribution at the tip
the filament increases too. By construction, the probability
moving the interface and the aggregation process increa
the tip. Therefore, in theory and for many time steps a
very fine grids, aggregation is enhanced at the tip. In pr
tice, however, the coarse grid used in space and time in
duces fluctuations which yield results departing from theo
To smooth these fluctuations we samplem times with the
same flux distribution, that is, we advancem positions per
time step. Figure 12 shows snapshots of the deposit w
1000 particles, for Fr56.25 and~a! m510, ~b! m550, ~c!
m5100, and~d! m5200; Fig. 13 shows the same but fo
Fr50.01. Comparing in Figs. 12 and 13 deposits for eq
m we see that the influence of the Fr number is weak
increases withm. For instance, the comparison of Fig. 12~d!
and Fig. 13~d!, shows in the latter a tendency to grow u
a

r-

f
f
at
d
c-
o-
.

th

l
t

wards and be more slender for reasons discussed ea
Higherm reduces the stochasticity of the system~a deeper
analysis of the influence of the parameterm in the morphol-
ogy of the deposit is deemed relevant and it is being purs
elsewhere!. This result is in accordance with the experimen
presented in@30# showing that at higher growth speeds, i.
larger Coulomb forces, the filament growth is thinner a
straighter due to vortex action.

The results of Fig. 12 and 13 show subtle changes in
structure of the deposit as a function of Coulomb forces~the
Fr number!. This is because the variation of the flux at th
interface with Coulomb forces is very small for the range
parameters used here. In addition, there is an artificial
cosity ~due to the coarseness of the grid used! that yields
velocities at the interface smaller than those correspondin
the Re number used. The use of denser grids diminishes
effect but is excluded due to computer limitations. To c
cumvent this problem we propose the following mechanis
We considerm as a function of Coulomb forces. For in
stance,m5a/Fr, where 1,a,100 is an adjustment param
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FIG. 12. Snapshots of the deposit with 1000 particles, for F
56.25 and~a! m510, ~b! m550, ~c! m5100, and~d! m5200.
r FIG. 13. Snapshots of the deposit with 1000 particles, for Fr
50.01 and~a! m510, ~b! m550, ~c! m5100, and~d! m5200.
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eter. So fora52 and Fr50.01,m5200 and fora562.5,
Fr56.25,m510. In this context, comparing the growth o
Fig. 12~a! with that of Fig. 13~d! for Fr50.01, we see tha
the influence of this number is much sharper, that is, lar

FIG. 14. Simulation of the growth in a small region near the
of one filament. Snapshots att520 000 sec of~a! deposit and
stream function contours~multiplied by 104) and ~b! deposit and
velocity map~same parameters as in Fig. 10 but for a grid of 1
3150 cells!.
-

n-
r

Coulomb forces~lower Fr numbers! yield taller and more
slender aggregates. These results suggest that an increa
the Fr number produces deposits with more side branch

Finally, the simulation of growth in a small region ne
the tip of one filament in a grid of 1503150 cells is shown.
The parameters are the same as in previous runs, bu
Fr56.25 and m51. Figure 14 depicts snapshots
t520 000 sec for~a! deposit and stream function contou
and ~b! deposit and velocity map. These results revea
streamline pattern with a pair of contrarotative vortices an
funnellike shape through which the copper ions are suc
into the tip. Behind the vortices the fluid is at rest.

VII. CONCLUSIONS

We presented theoretical and numerical results of a m
roscopic model for the study of ECD in a 2D linear cell wi
a constant potential between electrodes. Our aim was to
proximately describe dense-branched morphology exp
ments presented in the literature, whose growth is gover
by the coupled effects of diffusion, migration, and electr
convection. With a proper variation of the set of dimensio
less numbers introduced it is possible to obtain a stream
pattern showing the existence of local charges near the
of the filaments, the associated pair of contrarotating vorti
and a funnellike shape through which the cations are suc
into the tip. The genesis of the ramified deposit is elucida
through the analysis of the evolution of the vortex-tip inte
action. This evolution shows the stretching and division
vortices and the concomitant birth, splitting, fanning, a
death of tip filaments. There is a reasonably qualitat
agreement between the streamline, ion concentrations,
electrostatic potential computational results and the exp
mental results presented in the literature.
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